An arithmetic Poisson formula
نویسندگان
چکیده
منابع مشابه
An Arithmetic Poisson Formula for the multi-variate resultant
In these pages we compute the expectation of several functions of multi-variate complex polynomials. The common thread of all our outcomes is the basic technique used in their proofs. The used techniques combine essentially the unitary invariance of Bombieri-Weyl’s Hermitian product and some elementary Integral Geometry. Using different combinations of these techniques we compute the expectatio...
متن کاملAn Arithmetic Formula for the Partition Function
Although there is a vast literature on the properties of p(n), typically motivated by work of Ramanujan, some of the simplest questions remain open. For example, little is known about p(n) modulo 2 and 3. Most results concerning the congruence properties of p(n) have been proved using properties of (1.1). Theorems typically depend on q-series identities, the theory of modular equations, or the ...
متن کامل– Ocone Formula and Poisson Functionals
In this paper we first prove a Clark–Ocone formula for any bounded measurable functional on Poisson space. Then using this formula, under some conditions on the intensity measure of Poisson random measure, we prove a variational representation formula for the Laplace transform of bounded Poisson functionals, which has been conjectured by Dupuis and Ellis [A Weak Convergence Approach to the Theo...
متن کاملAn arithmetic intersection formula on Hilbert modular surfaces
In this paper, we obtain an explicit arithmetic intersection formula on a Hilbert modular surface between the diagonal embedding of the modular curve and a CM cycle associated to a nonbiquadratic CM quartic field. This confirms a special case of the author’s conjecture with J. Bruinier, and is a generalization of the beautiful factorization formula of Gross and Zagier on singular moduli. As an ...
متن کاملAn arithmetic intersection formula for denominators of Igusa class polynomials
In this paper we prove an explicit formula for the arithmetic intersection number (CM(K).G1)` on the Siegel moduli space of abelian surfaces, generalizing the work of Bruinier-Yang and Yang. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. Bruinier and Yang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1982
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1982.103.295